Authored by: |
Everyone’s
owned a pinwheel at one time or another. I remember riding in the back
of my parents’ car, sticking my pinwheel out the window as we traveled
down the street. The speed at which the pinwheel turned matched the
velocity of the car. On backstreets with low-speed limits the pinwheel
did great. But high-speed interstates were another matter: My pinwheel
soon flew apart as the car accelerated to cruise speed.
Wind turbines can suffer a similar fate. Not by sticking them out the
window of a car, of course, but by subjecting them to wind speeds found
in thunderstorms and other weather events that exceed turbine design
limits. Those conditions force turbine designers to somehow prevent the
rotor speed of the turbine from exceeding its design range. Ignoring
such precautions may produce a scene similar to the wind-turbine
explosion videos that now populate YouTube. (One example: http://bit.ly/4FEHbZ.)
Brakes could be used to keep the rotor from turning, but they’re
subject to failure or overload by the wind force on the turbine. The
turbine in the example video went into a runaway condition when its
brakes failed, letting the rotor freewheel.
A
better technique used to combat runaway conditions like this is blade
pitch control. The pitch of a wind-turbine blade describes the angle of
the blade chord to the plane of rotation. It is analogous to the way the
pitch of a leadscrew determines how far its load moves with each
rotation of the screw. Similarly, the pitch of a turbine blade is the
distance the blade would travel through the air in one rotation if it
were 100% efficient. Obviously turbine blades don’t move forward.
Rather, the wind pushes air past the blades as though the blades had
moved forward.
Wind speed versus the desired turbine rpm determines blade pitch.
There is a specific pitch angle for any given wind speed to optimize
output power. Pitch angles greater or less than this value reduce power
output, even to the point of zero rotation with high winds.
The hub of a wind-turbine propeller houses the pitch-control system
which, according to the European Wind Energy Association, accounts for
about 3% of a wind turbine’s total price. That small investment makes a
difference when conditions deteriorate. In fact, many turbine makers now
consider pitch control a good “insurance” policy.
When wind speed reaches 25 m/sec (50 mph) or higher, the
pitch-control system fail-safes the blades in a manner that reduces wind
loading and stops the turbine rotor from turning. These systems also
monitor wind speed and load to set the turbine blades at the best angle
needed for power output. Changes in blade pitch typically start when
wind speed reaches 12 to 13 m/sec (27 to 29 mph), the point where the
turbine reaches peak performance. If wind starts to exceed that level,
the pitch-control systems kick in to reduce the blade angle of attack,
taking a lower percentage of energy from the wind to keep the generator
near 100% output without overspeeding.
Pitch-changing systems generally come in two forms: either electric
or hydraulic. Rarely do makers of wind turbines use both types.
According to research from Intercedent Asia, the choice of pitch-control
system depends on the turbine manufacturer. In other words, the type of
pitch-control system never becomes a major issue should you find
yourself buying a wind turbine.
In a hydraulic system, hydraulic actuators control the pitch of all
blades simultaneously. The actuator typically works against a spring
that functions as a stop fail-safe upon loss of hydraulic pressure.
Hydraulic systems also seem to have a longer life, more driving power
for a higher speed response, and a low-maintenance backup system (the
spring) in case of failure. However a major drawback is the hydraulic
fluid itself. Should a seal leak, it’s possible for the blade to sling
hydraulic fluid over a wide geographic area, contaminating the
surrounding countryside. Additionally, hydraulic systems tend to use
more energy as the hydraulic pump must run continuously to keep pressure
high.
Obviously, electric pitch-control systems have no risk of leaking
hydraulic fluid. They also consume less power and waste less energy.
Once the actuator reaches its desired position, the actuator motor can
turn off while still holding the blade at the proper pitch angle.
However, electric pitch-control systems need fail-safe batteries or
supercapacitors to allow for loss of primary power or control. Fail-safe
batteries typically last only two to three years, and then must be
replaced — not a simple task as the fail-safe batteries sit in the hub
of the rotor, not in the nacelle. (The hub location assures power
remains available for the pitch-control system during an emergency such
as a grid loss or failure of the slip rings.) Electric systems also work
better in colder climes where the oil in hydraulic systems loses
viscosity as the temperature drops.
Future developments may bring a third option: a hybrid
electrohydraulic system. Hybrid technology uses electricity to control
blade pitch for daily operation, but uses hydraulic power to operate the
fail-safe that prevents damage to the blades.
Proponents of hybrid solutions say that because pitch control relies
mostly on electrical power, it mitigates the risk of leaking oil. They
also contend this would lower energy costs. As hybrid pitch-control
systems rely on hydraulics for fail-safe power, advocates point out the
lack of need for fail-safe batteries and their corresponding
maintenance.
No comments:
Post a Comment
Silakan berkomentar,tapi yang sopan ya( jangan melakukan komentar spam )....!